
JCons Manual
Release 1.3

Johan Holmberg

May 06, 2013

CONTENTS

1 Introduction 1
1.1 About this document . 1
1.2 How JCons works . 2

2 A tour of JCons 3
2.1 Basics . 3
2.2 Several output files . 5
2.3 C++ programs . 5
2.4 Include files . 6
2.5 Libraries . 6
2.6 Variant builds . 6
2.7 Cache of build results . 8
2.8 The construct.py file . 8
2.9 conscript.py files . 8

3 Reference 11
3.1 Handling of PATH & ENV . 11
3.2 Evaluation of %VAR variables . 11
3.3 Flattening of parameters . 11
3.4 Nested Cons parameters . 11
3.5 Cons methods . 12
3.6 Configuration Variables . 14

4 Background 17
4.1 Why Make? . 17
4.2 Why not Make? . 17

5 Appendix 19
5.1 Speed benchmarking . 19

6 Indices and tables 21

Index 23

i

ii

CHAPTER

ONE

INTRODUCTION

JCons is a Make replacement, i.e. a program for building other programs. JCons is designed to build C/C++
programs, but any files that are produced in a well defined manner can be created under the control of JCons. As
can be guessed from the name, JCons’ main inspiration is Cons, the make tool written in Perl (described in the
Spring 1998 issue of “The Perl Journal”). To my knowledge Cons was the first make tool to combine a number of
interesting ideas:

• The build description files can be programs written in an existing language (e.g. Perl), instead of using a
description language that is unique to the make tool (e.g. Makefile-syntax or Jam-files).

• Cryptographic checksums can be used to get more reliable dependency checking than that provided by
Make, where file timestamps are used to decide if a file should be rebuilt.

• Automatic detection of #include file dependencies makes building of C/C++ programs much more reli-
able.

JCons tries to steal most of the good ideas of Cons. But there are important differences too, for example:

• JCons uses Python as its primary language for description files.

• JCons can build in parallel.

• JCons is much faster than Cons when doing an up-to-date check.

The ideas pioneered by Cons are not so special today over fifteen years later. A number of similar tools exist, most
notably SCons (also inspired by Cons). Compared to SCons, JCons is quite minimalistic and lacks many features.

So why develop JCons? First, because it was fun. Writing a make tool seems quite easy in the beginning. But to
get a reliable, fast and useful tool requires attention to many small details. This has been an interesting challenge.
Second, because I believe JCons does some things better than both Cons and SCons. JCons is for example much
faster than both Cons and SCons.

1.1 About this document

The rest of this document tries to describe how to use JCons. First a simple example will be given to illustrate the
overall way JCons works. Then a guide to the different JCons features follows. And finally a reference part will
describe all the details.

If you have used Cons before, you should recognize many things. The biggest difference from Cons is of course
that JCons uses Python as scripting language instead of Perl.

The examples in the text have actually been executed as real commands. This should ensure that they stay correct
at all times.

1

http://en.wikipedia.org/wiki/Make_(software)
http://www.dsmit.com/cons/
http://www.perl.org/
http://www.dsmit.com/cons/
http://www.perl.org/
http://en.wikipedia.org/wiki/Make_(software)
http://www.dsmit.com/cons/
http://www.python.org/
http://www.dsmit.com/cons/
http://www.scons.org/
http://www.dsmit.com/cons/
http://www.scons.org/
http://www.dsmit.com/cons/
http://www.scons.org/
http://www.dsmit.com/cons/
http://www.scons.org/
http://www.dsmit.com/cons/

JCons Manual, Release 1.3

1.2 How JCons works

1. JCons looks for a file construct.py, and loads it as Python code. The file has the same role for JCons
as the Makefile has for Make.

2. The code in construct.py should call methods in the Cons class. These methods are used to inform
JCons what things there are to build.

3. Once the construct.py has been read, JCons uses the collected information to start its build engine.

A minimal example of using JCons is given below:

construct.py
e = Cons()
e.command("readme.pdf", "readme.ps", "ps2pdf %INPUT %OUTPUT")
e.command("readme.ps", "readme.txt", "enscript -q %INPUT -o %OUTPUT")

The calls to Cons.command() tells JCons how the output files can be produced from the input files:

$ echo a line of text > readme.txt # create source file
$ jcons
enscript -q readme.txt -o readme.ps
ps2pdf readme.ps readme.pdf
$ jcons # nothing to do 2nd time
jcons: up-to-date: .
$ echo one more line >> readme.txt
$ jcons # input file has changed
enscript -q readme.txt -o readme.ps
ps2pdf readme.ps readme.pdf

All methods of the Cons class are of this type. Each method is useful in a different situation: program to build a
program, static_library to create a library, etc. But all methods could in principle have been implemented
on top of the command method.

2 Chapter 1. Introduction

http://www.python.org/
http://en.wikipedia.org/wiki/Make_(software)

CHAPTER

TWO

A TOUR OF JCONS

2.1 Basics

Suppose we have a program consisting of two modules main.c and mod1.c, and a header file mod1.h:

/* main.c */
#include <stdio.h>
#include "mod1.h"
int main() {

printf("%s from main\n", GREETING);
mod1_greeting();
return 0;

}

/* mod1.c */
#include <stdio.h>
#include "mod1.h"
void mod1_greeting() {

printf("%s from mod1\n", GREETING);
}

/* mod1.h */
#define GREETING "hello"
extern void mod1_greeting();

To build it with JCons we could create the following file:

construct.py
e = Cons()
e.program("prog", "main.c", "mod1.c")

When JCons is invoked, the program prog will be built in the following manner:

$ jcons
gcc -c main.c -o main.o
gcc -c mod1.c -o mod1.o
gcc -o prog main.o mod1.o
$ jcons
jcons: up-to-date: .
$./prog
hello from main
hello from mod1

The second time everything is “up to date”, so nothing is done. If any of the involved files changes, JCons will
detect that an re-build the necessary files:

$ echo "void a_change() {}" >> main.c # change source file
$ jcons
gcc -c main.c -o main.o

3

JCons Manual, Release 1.3

gcc -o prog main.o mod1.o

$ rm main.o # remove object file
$ jcons
gcc -c main.c -o main.o

$ echo GARBAGE > mod1.o # destroy content of object file
$ jcons
gcc -c mod1.c -o mod1.o

$ rm prog # remove program
$ jcons
gcc -o prog main.o mod1.o

In some of the examples above only an object file is rebuild. Since the newly created object file has the same
content as before, no re-linking is needed. For users of Make this might seem odd, but this is one of the features
of tools like JCons. JCons tracks changes to the contents of the files. The only function of timestamps is as an
indicator of change (a file might have changed if its timestamp has changed). If we only change the timestamps of
files, nothing will be re-built:

$ touch main.c
$ jcons
jcons: up-to-date: .

$ touch mod1.o
$ jcons
jcons: up-to-date: .

$ touch prog
$ jcons
jcons: up-to-date: .

The module mod1.c has a header file mod1.h included by the C file itself and by main.c. JCons will detect
changes to that header file:

$ jcons # up-to-date before change
jcons: up-to-date: .

$ perl -i -pe ’s/hello/goodbye/’ mod1.h # change header file
$ jcons
gcc -c main.c -o main.o
gcc -c mod1.c -o mod1.o
gcc -o prog main.o mod1.o
$./prog
goodbye from main
goodbye from mod1

This works because JCons looks for #include lines in the source files and automatically adds dependencies for
the files it finds. If we would like to build the program in a debug flavor, we need to change the construct.py
file:

construct.py
e = Cons(CFLAGS = "-DDEBUG -g", LINKFLAGS = "-g")
e.program("prog", "main.c", "mod1.c")

$ jcons
gcc -DDEBUG -g -c main.c -o main.o
gcc -DDEBUG -g -c mod1.c -o mod1.o
gcc -o prog -g main.o mod1.o

As can be seen, the configuration variable CFLAGS affects how a C program is built. Variables like CFLAGS can
also be set temporarily on the command line:

4 Chapter 2. A tour of JCons

JCons Manual, Release 1.3

$ jcons CFLAGS="-O2" # command line override
gcc -O2 -c main.c -o main.o
gcc -O2 -c mod1.c -o mod1.o
gcc -o prog -g main.o mod1.o

$ jcons CFLAGS="-Wall" # another override
gcc -Wall -c main.c -o main.o
gcc -Wall -c mod1.c -o mod1.o
gcc -o prog -g main.o mod1.o

$ jcons CFLAGS="-Wall" # same setting again
jcons: up-to-date: .

$ jcons # back to normal
gcc -DDEBUG -g -c main.c -o main.o
gcc -DDEBUG -g -c mod1.c -o mod1.o
gcc -o prog -g main.o mod1.o

As can be seen in the examples, a change in command line triggers a rebuild. JCons includes the command line
in the dependency calculation. JCons knows which files are “generated files” and can remove them if asked to do
that (with the -r option):

$ jcons -r # remove generated files
Removed main.o
Removed mod1.o
Removed prog

It is also possible to force a full rebuild:

$ jcons # normal build
gcc -DDEBUG -g -c main.c -o main.o
gcc -DDEBUG -g -c mod1.c -o mod1.o
gcc -o prog -g main.o mod1.o

$ jcons # nothing to do
jcons: up-to-date: .

$ jcons --always-make # forced build
gcc -DDEBUG -g -c main.c -o main.o
gcc -DDEBUG -g -c mod1.c -o mod1.o
gcc -o prog -g main.o mod1.o

2.2 Several output files

A command can have several output files. The method Cons.command() can handle this situation:

e = Cons()
e.command(["parse.tab.c", "parse.tab.h"], "parse.y", "bison -d parse.y")

Here the output argument is an array of files produced by the command. If any of those files doesn’t exit or is
out-of-date the command has to be run. Both the input- and output-argument to Cons.command() can be arrays
instead of single values. JCons understands how to deal with those cases too.

2.3 C++ programs

If the some of the source files had been C++ rather than C files, the construct.py would look almost the same:

2.2. Several output files 5

JCons Manual, Release 1.3

construct.py
e = Cons()
e.program("prog", "main.cpp", "mod1.c")

When running JCons we then get:

$ jcons
g++ -c main.cpp -o main.o
gcc -c mod1.c -o mod1.o
g++ -o prog main.o mod1.o

Note that g++ is used to compile the C++ file, and also used when linking.

2.4 Include files

The include path to a C/C++ compiler is typically given by -I options on the command line. For JCons to be able
to calculate the #include dependencies, the directories have to be specified via a variable CPPPATH:

construct.py
e = Cons(CPPPATH = ["dir1", "dir2"])
e.program("prog", "main.c")

When JCons is executed the values in CPPPATH are translated into -I ‘‘ options on the command
line. Suppose the file ‘‘main.c looks like:

/* main.c */
#include <main.h>
int main() { return EXIT_CODE; }

Running JCons we get:

$ mkdir -p dir1 dir2
$ echo "#define EXIT_CODE 2" > dir2/main.h
$ jcons
gcc -I dir1 -I dir2 -c main.c -o main.o
gcc -o prog main.o

$ echo "#define EXIT_CODE 1" > dir1/main.h
$ jcons
gcc -I dir1 -I dir2 -c main.c -o main.o
gcc -o prog main.o

The second time JCons realizes that the main.h located in dir1 is going to be used, and recompiles main.c.

2.5 Libraries

TODO: write this section

2.6 Variant builds

Often a program should be built in several “flavours”, e.g. a debug and and a release version. Then the object files
and executables need to be stored in different places for each flavour. JCons makes it easy to change where the
output is placed in several ways:

1. in a separate build directory tree (by using BUILD_TOP)

2. in separate sub-directories (by using BUILD_SUBDIR)

6 Chapter 2. A tour of JCons

JCons Manual, Release 1.3

3. with different filename suffixes (by using BUILD_SUFFIX)

If BUILD_TOP is used, we get:

construct.py
e = Cons(BUILD_TOP = "build/release")
e.program("prog", "main.c", "lib/mod1.c")

$ jcons
gcc -c lib/mod1.c -o build/release/lib/mod1.o
gcc -c main.c -o build/release/main.o
gcc -o build/release/prog build/release/main.o build/release/lib/mod1.o

To build both a release and a debug version, we can use normal Python scripting:

construct.py
flavors = [

["release", "-O2 -DNDEBUG"],
["debug", "-DDEBUG"],

]
for flavor, cflags in flavors:

e = Cons(BUILD_TOP = "build/" + flavor, CFLAGS = cflags)
e.program("prog", "main.c", "lib/mod1.c")

With this file the build would look like:

$ jcons --always-make
gcc -DDEBUG -c lib/mod1.c -o build/debug/lib/mod1.o
gcc -DDEBUG -c main.c -o build/debug/main.o
gcc -o build/debug/prog build/debug/main.o build/debug/lib/mod1.o
gcc -O2 -DNDEBUG -c lib/mod1.c -o build/release/lib/mod1.o
gcc -O2 -DNDEBUG -c main.c -o build/release/main.o
gcc -o build/release/prog build/release/main.o build/release/lib/mod1.o

If BUILD_SUBDIR was used instead of BUILD_TOP, we would get:

construct.py
e = Cons(BUILD_SUBDIR = "release")
e.program("prog", "main.c", "lib/mod1.c")

$ jcons
gcc -c lib/mod1.c -o lib/release/mod1.o
gcc -c main.c -o release/main.o
gcc -o release/prog release/main.o lib/release/mod1.o

or if BUILD_SUFFIX was used:

construct.py
e = Cons(BUILD_SUFFIX = "release")
e.program("prog", "main.c", "lib/mod1.c")

$ jcons
gcc -c lib/mod1.c -o lib/mod1-release.o
gcc -c main.c -o main-release.o
gcc -o prog-release main-release.o lib/mod1-release.o

Note that only methods producing object files or executables (e.g. Cons.program() or
Cons.static_library()), are affected by the BUILD_* variables. Cons.command() does not
look at those variables.

2.6. Variant builds 7

http://www.python.org/

JCons Manual, Release 1.3

2.7 Cache of build results

JCons can cache the generated files in a special directory. If the same file is about to built again later, JCons
can replace the actual command with a copy operation from the cache directory. This is much faster, and avoids
needlessly re-executing the same command with the same input several times.

TODO: add example

2.8 The construct.py file

JCons reads a file construct.py (or another file specified with an -f option). This file is a normal Python file
where methods of the Cons class can be called. The purpose of the file is to tell JCons what there is to build (i.e.
help build the directed acyclic graph (DAG) describing the dependencies). It is of course possible (but pointless)
to do something entirely different in the script, but then JCons would not know what to do:

construct.py
print("hello world") # pointless use of JCons
exit(0)

$ jcons
hello world

The first thing to do in a construct.py file is to create an object of the Cons class. Then methods
can be called on that object to tell JCons what there is to build. There are different methods for differ-
ent needs (e.g. Cons.command(), Cons.object(), Cons.objects(), Cons.static_library(),
Cons.program()). The following example will demonstrate:

e = Cons()

C program with two modules
e.program("foo", "foo.c", "bar.c")

generic command
e.command("bar.pdf", "bar.ps", "ps2pdf %INPUT %OUTPUT")

a library
e.static_library("mylib", "x.cpp", "y.cpp", "z.cpp")

The constructor of the Cons class can take optional named arguments. For example:

e1 = Cons(CFLAGS = "-g -Wall")
e1.program("foo", "foo1.cpp", "foo2.c")

e2 = Cons(CFLAGS = "-O2 -Wall", CXXFLAGS = "-O2")
e2.program("bar", "bar1.cpp", "bar2.c")

2.9 conscript.py files

A larger application will be spread over a number of directories. Each directory may produce a program or a library
used by some program. To handle this situation, the main construct.py file can include other subsidiary files
(typically called conscript.py in the tradition from Cons):

construct.py
e = Cons()
e.program("prog", "main.c", "util/util.a")
Cons.include("util/conscript.py")

8 Chapter 2. A tour of JCons

http://www.python.org/
http://www.dsmit.com/cons/

JCons Manual, Release 1.3

util/conscript.py
e = Cons()
e.static_library("util", "util.c")

With these files we get:

$ jcons
gcc -c main.c -o main.o
gcc -c util/util.c -o util/util.o
ar rc util/util.a util/util.o
gcc -o prog main.o util/util.a

JCons maintains one global DAG of all dependencies. All included conscript.py file contribute to this de-
pendency graph.

2.9. conscript.py files 9

JCons Manual, Release 1.3

10 Chapter 2. A tour of JCons

CHAPTER

THREE

REFERENCE

3.1 Handling of PATH & ENV

JCons does not alter the environment in any way. So the environment an executed command sees, is the same as
the one in effect when jcons was started. And JCons does not find compilers and other tools in some magic way.
It is the responsibility of the JCons user to have a suitable PATH before invoking JCons. It is of course possible to
set the PATH at the start of the construct.py too, the normal Python way:

construct.py
import os
os.environ["PATH"] += ":/some/path/bin"
e = Cons()
e.program("prog", "main.c", "mod1.c")

3.2 Evaluation of %VAR variables

When a Cons object is created, it is also given a number of variable settings that affects how things are built.

TODO: write more about evaluation, predefined variables,

3.3 Flattening of parameters

Several of the methods of a Cons object expect a list of files (e.g. Cons.program()). The list of files can be
“nested”. JCons will automatically “flatten” the list. The following examples are all equivalent:

e.program("prog", "f1.c", "f2.c", "f3.c", "f4.c", "f5.c")

e.program("prog", ["f1.c", "f2.c", "f3.c", "f4.c", "f5.c"])

f12 = ["f1.c", "f2.c"]
f45 = ["f4.c", ["f5.c"]]
e.program("prog", f12, ["f3.c"], f45)

JCons flattens file parameters nested as deep as five levels. This is an arbitrary limit, just to avoid “recursive” lists.

3.4 Nested Cons parameters

The way a file is compiled is affected by the Cons object used when calling a method (e.g. Cons.program()).
Sometimes a program may consist of different groups of files that should be compiled differently. Suppose for
example that your application consists of two sets of files that should be built in different ways. JCons handles
this by allowing nested Cons parameters:

11

http://www.python.org/

JCons Manual, Release 1.3

e = Cons()
e_foo = Cons(CFLAGS = "-DFOO")
e_bar = Cons(CFLAGS = "-DBAR")

foo_srcs = ["foo1.c", "foo2.c", ... "foo30.c"]
bar_srcs = ["bar1.c", "bar2.c", ... "bar40.c"]

e.program("prog", [e_foo, foo_srcs], [e_bar, bar_srcs], "mylib.a")

Here the files foo*.c will be built using the -DFOO setting, and the files bar*.c will be built using the -DBAR
setting. The link step will use the first created Cons object (the variable e). For each file, the “closest enclosing”
and preceding Cons object will be used.

3.5 Cons methods

class Cons(**kwargs)
This is the constructor, creating an object of type Cons. Most other methods described below are instance
methods on the objects returned by this constructor. The constructor takes an optional hash-argument with
settings of configuration variables affecting how things are to be built.

A Cons object is meant to capture a way of building things, e.g. a debug- or release-build, or the use of
a specific compiler. You are free to create as many Cons objects as you need. An example demonstrates
some typical uses:

e1 = Cons()
e1.program("foo1", "foo1.cpp", "bar1.c")

e2 = Cons(CFLAGS = "-g", CXXFLAGS = "-g")
e2.program("foo2", "foo2.cpp", "bar2.c")

Cons.clone(**kwargs)
This method creates a copy of an existing object, but modified by the settings given as arguments. A typical
use is to make a slight modification of an already exiting object:

e1 = Cons(A="1", B="2", C="3")
e2 = e1.clone(B="22", D="4")

This is almost the same as the following:

e1 = Cons(A="1", B="2", C="3")
e2 = Cons(A="1", B="22", C="3", D="4")

Cons.command(target, source, command)
This is the most basic way of describing how a “target” is built from a “source”. The command needed to
build the target is specified explicitly:

e = Cons()
e.command("bar.pdf", "bar.ps", "ps2pdf bar.ps bar.pdf")

Instead of specifying the filenames in two places, the symbols %INPUT and %OUTPUT can be used in the
command. JCons will replace these symbols automatically with the actual filenames before executing the
command:

e = Cons()
e.command("bar.pdf", "bar.ps", "ps2pdf %INPUT %OUTPUT")

Both the target and the source parameters may be an array of files. So a command taking two input files,
and producing three output files can be handled:

e = Cons()
e.command(["out1.txt", "out2.txt", "out3.txt"],

12 Chapter 3. Reference

JCons Manual, Release 1.3

["in1.txt", "in2.txt"],
"some_program ...some_parameters...")

The %INPUT and %OUTPUT variables can be used here too, they will be set to a space separated list of the
input/output files.

TODO: describe use of ”:uses_cpp”.

Cons.program(target, source1, ... sourceN)
TODO: make this section more “reference style”

A common scenario is that a C/C++ program should be built from sources. JCons has a special method
named program() for this. The same effect can in principle be accomplished with a number of calls to
the command() method but it would be more clumsy. The most basic program() usage looks like:

e = Cons()
e.program("prog", "main.c", "mod1.c")

This will build an executable prog from the two source files main.c and mod1.c. The compiler set-
tings used are the ones given by the Cons object used. In the example above with no parameters to the
constructor, the “default” compiler for the platform will be chosen. On Mac OS X it might look like:

$ jcons .
gcc -c main.c -o main.o
gcc -c mod1.c -o mod1.o
gcc -o prog main.o mod1.o

The sources can be specified as individual arguments to the program method, or as an array. If the list of
sources is long it might be convenient to use an array:

srcs = ["foo1.cpp", "foo2.cpp", ... "foo99.cpp"]
e.program("prog", srcs)

The “sources” can also be object files or library files:

e.program("prog", "foo.cpp", "bar.o", "mylib.a")

This method returns the “target”, i.e. the program built. This is almost the same as the target parameter, but
is affected by the BUILD_* symbols, and on Windows, an ”.exe” file suffix has been added automatically.

This method is affected by the setting of BUILD_TOP, BUILD_SUBDIR and BUILD_SUFFIX (see the
Variant builds section).

Cons.object(target, source)
To build an object file from a source file with explicit control of the object filename, the object() method
can be used:

e1 = Cons()
e1.object("foo.o", "foo.c")

e2 = Cons(CFLAGS = "-g")
e2.object("foo-debug.o", "foo.c")

The method does not return anything useful.

Cons.objects(source1, source2, ... sourceN)
The objects() method tells JCons that a number of source files should be built, and returns a list of the
object files produced:

e = Cons()
objs = e.objects("foo.c", "bar.c", "frotz.c")
e.program("foo", objs)

The lines above have the same effect as:

3.5. Cons methods 13

JCons Manual, Release 1.3

e = Cons()
objs = e.program("foo", "foo.c", "bar.c", "frotz.c")

This method is affected by the setting of BUILD_TOP, BUILD_SUBDIR and BUILD_SUFFIX (see the
Variant builds section).

Cons.static_library(library, source1, source2, ... sourceN)
The static_librarymethod tells JCons to build a static library from a number of source or object files:

e = Cons()
e.static_library("libfoo", "foo.c", "bar.c", "frotz.c")

TODO: describe ”.a” handling TODO: describe “lib*” handling TODO: example using the library

This method is affected by the setting of BUILD_TOP, BUILD_SUBDIR and BUILD_SUFFIX (see the
Variant builds section).

Cons.depends(target, source)
Tell JCons that “target” depends on “source”, even if JCons can’t find this out by itself. This method is only
useful as a complement to another method call, e.g. command or program. depends by itself has no
way of of telling which command should be executed if the dependency “fires”.

TODO: example

Cons.exe_depends(target, source)
Tell JCons that the program “target” depends on “source” when executed. If another build rule uses “target”
as the command to execute, it will need to be rerun if the “source” has changed.

Cons.install(target, source)
Copy the “source” to “target”.

Cons.install(target_dir, source)
Copy the “source” to “target_dir”.

Cons.include(filename)
Read a conscript.py file in a sub-directory.

3.6 Configuration Variables

JCons “knows” about a number of variables. These are listed here. Variables beginning with an “_” are set by
JCons too.

AR The name of the ar(1) command to use when building static libraries. (default: “ar”)

AR_CMD The full command used to run ar(1). Uses AR and AR_FLAGS.

AR_FLAGS The options used when running ar(1). (default: “rc”)

CC The name of the C compiler to use. (default: “gcc”)

CC_CMD The full command used to run the C compiler. Uses CC and CFLAGS.

CC_LINK bla bla

CFLAGS bla bla

CXX bla bla

CXXFLAGS bla bla

CXX_CMD bla bla

CXX_LINK bla bla

EXE_EXT bla bla

INPUT bla bla

14 Chapter 3. Reference

JCons Manual, Release 1.3

LIB_EXT bla bla

OBJ_EXT bla bla

OUTPUT bla bla

_CPP_INC_OPTS Set by JCons from the CPPPATH variable.

3.6. Configuration Variables 15

JCons Manual, Release 1.3

16 Chapter 3. Reference

CHAPTER

FOUR

BACKGROUND

4.1 Why Make?

Why are Make-like programs needed at all? The first and most obvious answer is: to save time. A small application
can easily be built by a script, performing all steps every time it is invoked:

#!/bin/sh -e
g++ file1.cpp -o file1.o
g++ file2.cpp -o file2.o
g++ file3.cpp -o file3.o
g++ -o prog file1.o file2.o file3.o

Running this script may perhaps take a couple of seconds. The fact that we re-compile all files even if just one
file has changed is not a problem. And if we are not sure that prog is up-to-date, we can run the script once
again just to be sure to get an up-to-date prog. But what if we have a project with 800 source files? In principle
we could build this program too with a simple script. But now the sheer number of files makes this take much
longer (perhaps as long as an hour). We can no longer run the script just to be sure the program is up-to-date. And
waiting an hour after just changing one source file is not a real option. A Make-like program on the other hand
would detect that just one file had changed, and would re-compile that single file and then re-link the application,
probably in less than a minute (instead of an hour). This is a huge time saving.

Another need for a Make-like program is: to make sure that all files are built in the right order. In a large project
it may not be obvious exactly what order of commands is needed to produce the final program. Some source
files may for example be generated by other tools, which in turn may be built as part of the whole build process.
Keeping track of all dependencies “by hand” is difficult, and there is an definite risk that the final program will be
built incorrectly.

Make-like programs solve the problems described above by specifying declaratively how different target files
depend on their source files. It is then up to the Make-like program to decide which commands should be executed
and in what order. The dependencies form a DAG (a directed acyclic graph), and there are well-known algorithms
to traverse such a graph in the right order.

4.2 Why not Make?

So if Make solves the build problem, and essentially does it “the right way”, why would there be a need for other
tools than Make?

First: lack of global view of all dependencies. A large software project will span a number of different directories.
The traditional Make-solution is to have a Makefile in each subdirectory and have the top Makefile orches-
trate the build process by recursively calling Make in each subdirectory. Each Make-instance will then only have a
partial view of the total dependency tree. This can easily lead to situations where the programmer feels compelled
to invoke Make several times, just to make sure everything is updated correctly, in case the Makefiles don’t catch
all global dependencies correctly (see Peter Millers paper: ”...”).

Second: Make-syntax is a poor “programming language”. Originally Make had a simple declarative syntax. But
as time went by, the need for more “power” have lead to addition of a number of new features. This can be seen

17

http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)

JCons Manual, Release 1.3

for example in GNU Make, the de facto standard in open source projects. GNU Make has got many programming
language-like features. This “make on steroids” is very powerful, but the Makefiles often looks awful.

Third: poor file dependency tracking. A basic assumption in Make is that comparing file timestamps is a good
way to see if a file need to be rebuilt. It is easy to “fool” Make that a file is up-to-date (just “touch” the file). Or if
a source file is accidentally re-written to disk without any actual changes, a whole project may need to be rebuilt
because of the changed timestamp.

Fourth: changed command line is not taken into account when deciding if a target file need to be updated. After
changing some compiler option in a Makefile, a full rebuild may be needed to make sure all affected object files
are updated correctly.

Fifth: “#include” dependencies are not tracked by Make. Sure, there are ways to compensate for this by having
artificial entries in the Makefile, calling the compiler asking it for these dependencies. But this needs a lot of
boilerplate code in the Makefile.

Sixth: implicit rules are bad ...

For some of the defects in Make there are workarounds today (e.g. #include file tracking). Others could in
principle be solved in Make (e.g. using cryptographic checksums instead of timestamps). But the first two are not
easily fixed within Make: 1) the poor programing language, and 2) the lack of global dependency view.

18 Chapter 4. Background

http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Make_(software)

CHAPTER

FIVE

APPENDIX

5.1 Speed benchmarking

One example: on a program consisting of around 800 C++ files I have measured the time to verify that the program
is “up-to-date”. I got the following numbers: Cons 42 s, SCons 102 s, JCons 1.03 s. These numbers were measured
on an IMac G5 2.0 GHz from 2005 running MAC OS Leopard. In all three cases the build descriptions just use
the most basic methods available: Cons.program(), Cons.static_library() and Cons.objects()
(named slightly different in the different tools).

19

http://www.dsmit.com/cons/
http://www.scons.org/

JCons Manual, Release 1.3

20 Chapter 5. Appendix

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

21

JCons Manual, Release 1.3

22 Chapter 6. Indices and tables

INDEX

C
clone() (Cons method), 12
command() (Cons method), 12
Cons (built-in class), 12

D
depends() (Cons method), 14

E
exe_depends() (Cons method), 14

I
include() (Cons method), 14
install() (Cons method), 14

O
object() (Cons method), 13
objects() (Cons method), 13

P
program() (Cons method), 13

S
static_library() (Cons method), 14

23

	Introduction
	About this document
	How JCons works

	A tour of JCons
	Basics
	Several output files
	C++ programs
	Include files
	Libraries
	Variant builds
	Cache of build results
	The construct.py file
	conscript.py files

	Reference
	Handling of PATH & ENV
	Evaluation of %VAR variables
	Flattening of parameters
	Nested Cons parameters
	Cons methods
	Configuration Variables

	Background
	Why Make?
	Why not Make?

	Appendix
	Speed benchmarking

	Indices and tables
	Index

